
Journal of Open Aviation Science (2023), 1, 1–22
doi:10.74800/iucsp.1.2023 1

ARTICLE 2

Introduction to UNIX Commands and Shell Programming 3

Sumit Yadav,* Raju Kumar Yadav,* and Prashant Bhandari* 4

Pulchowk Campus, Lalitpur, Nepal 5

*Corresponding author: 076bct088.sumit@pcampus.edu.np; 076bct100.raju@pcampus.edu.np; 076bct049.prashant@pcampus. 6

edu.np 7

(Received 1 March 2023; revised 1 March 2023; accepted 10 March 2023; first published online 20 March 2023) 8

(Editor: Sumit Yadav, Raju Kumar Yadav, Prashant Bhandari; open reviewed by: Bikal Adhikari, Lok Nath Regmi) 9

10

Abstract
This project highlights the importance of Unix commands, Vi editor commands, and Unix shell program-
ming commands for programmers and system administrators working on Unix-based operating systems.
The project covers various Unix commands for managing files, directories, and processes, along with Vi
editor commands and Unix shell programming commands like variables, loops, conditional statements,
and file handling.

Additionally, the project includes 22 programming questions that cover string manipulation, arithmetic
operations, process management, file handling, and memory management schemes. These questions
provide a useful exercise for enhancing programming skills and reinforcing the concepts learned in the
project.

In conclusion, this project provides a comprehensive understanding of Unix commands, Vi editor com-
mands, and Unix shell programming commands, and offers various programming questions to strengthen
programming abilities.

Keywords: Unix, commands, Vi editor, shell programming, programmers, system administrators, operating systems, work- 11

ing directory, file management 12

1. Introduction 13

UNIX is an operating system that was originally developed in the 1960s and 70s by a group of com- 14

puter scientists at Bell Labs. It has since become one of the most popular operating systems in the 15

world, known for its stability, security, and powerful command-line interface. UNIX has been used 16

to power everything from desktop computers to servers and even supercomputers. 17

One of the key features of UNIX is its command-line interface, which allows users to interact with 18

the operating system through a series of commands typed into a terminal window. This interface 19

provides a great deal of power and flexibility, allowing users to perform complex operations quickly 20

and efficiently. Many software developers and system administrators prefer to use UNIX because of 21

this flexibility and the ability to automate tasks using shell scripts. 22

UNIX is also known for its multi-user and multi-tasking capabilities. Multiple users can log into 23

the same system at the same time and run their own programs and tasks, without interfering with 24

one another. The system is also able to manage multiple tasks simultaneously, allowing users to run 25

background tasks while still using the system for other purposes. 26

© Nepali Harvest 2023. This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International
(CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/)

076bct088.sumit@pcampus.edu.np
076bct100.raju@pcampus.edu.np
076bct049.prashant@pcampus.edu.np
076bct049.prashant@pcampus.edu.np
076bct049.prashant@pcampus.edu.np
https://creativecommons.org/licenses/by/4.0/


2 Sumit Yadav et al.

Over the years, many different versions of UNIX have been developed, including Linux, which is a 27

popular open-source variant. UNIX has also been adapted for use in many different fields, including 28

scientific research, finance, and government. Despite its age, UNIX remains a powerful and versatile 29

operating system that is widely used and respected in the technology industry. 30

UNIX commands and shell programming are essential components of the UNIX operating system. 31

UNIX provides a vast array of commands that can be used to perform a wide range of tasks, from 32

managing files and directories to networking and system administration. 33

Some of the most commonly used UNIX commands include: 34

ls: Lists the files and directories in the current directory cd: Changes the current working directory 35

mkdir: Creates a new directory touch: Creates a new file or updates the timestamp on an existing 36

file cat: Concatenates files and prints the output to the terminal cp: Copies files or directories from 37

one location to another mv: Moves or renames files and directories rm: Removes files or directories 38

In addition to these basic commands, UNIX also provides more advanced commands for tasks such 39

as file compression, process management, and network administration. 40

UNIX shell programming involves using the shell scripting language to automate tasks and create 41

custom tools. The shell is a command-line interface that provides access to the operating system’s 42

services and utilities. Shell scripts are programs written in the shell language and are executed by 43

the shell. 44

Some of the key features of UNIX shell programming include: 45

Variables: Shell scripts can define and manipulate variables to store data and control program flow. 46

Control structures: Shell scripts support control structures such as loops and conditional statements 47

for more complex programming logic. Functions: Shell scripts can define functions to group code 48

and create reusable code blocks. Input/output: Shell scripts can read input from files or the terminal 49

and output data to files or the terminal. Error handling: Shell scripts can handle errors and exceptions 50

to ensure the program continues running even if an error occurs. 51

Shell scripts can be used for a wide range of tasks, from automating routine system administration 52

tasks to creating custom tools and utilities. They are a powerful tool for improving productivity and 53

efficiency on UNIX systems. 54

2. AIMS 55

2.1 Basic UNIX commands 56

Some of the basic UNIX commands that we implement in os lab. 57

• Display date and time: The command date is used to display the current date and time in the 58

terminal. It also allows you to set the system date and time if required. 59

• To display calendar of years and month in terminal: 60

The command cal is used to display the calendar of the current month in the terminal. You can also 61

specify the year using the option -y followed by the year number. 62

• Used to print text in linux: 63

The command echo is used to print text in the terminal. It can also be used to print the values of 64

variables and to create files. 65

• Used to display the argument in # symbol: 66

The command echo # is used to display the argument in the terminal with a # symbol in front of it. 67

• Display the current working directory: 68

The command pwd is used to display the current working directory in the terminal. 69



Journal of Open Aviation Science 3

• Display the terminal names: 70

The command tty is used to display the name of the terminal device in the terminal. 71

• Clear the screen: 72

The command clear is used to clear the contents of the terminal screen. It does not delete the 73

previous commands or output, but only hides them from view. 74

Command Description
date Displays the current date and time
cal Displays a calendar for a specific month or year
echo Prints text to the terminal
# Comments out a line of text
pwd Displays the current working directory
tty Displays the terminal name
clear Clears the terminal screen
man Displays the manual page for a specific command
help Displays help information for a specific command
tput Modifies terminal settings
ls Lists the files and directories in the current directory
mkdir Creates a new directory
cd Changes the current directory
cat Displays the contents of a file
mv Moves a file or directory
rm Removes a file or directory
cat -n <filename> Displays the contents of a file with line numbers
sort Sorts the contents of a file
cp Copies a file or directory
wc Counts the number of lines, words, and characters in a file
lp Sends a file to a printer
pg Displays a file one page at a time
head Displays the first few lines of a file
tail Displays the last few lines of a file
ls -a Lists all files and directories, including hidden files
more <filename> Displays the contents of a file one page at a time
more Continues displaying the contents of a file one page at a time
grep [optional] pattern <filename> Searches for a pattern in a file
sort <filename> Sorts the contents of a file
$merge <user name> Merges multiple user accounts into one
$wall <message> Sends a message to all users
$mail <user name> Sends an email to a user
$reply <user name> Replies to a user’s email

75

2.2 Vi editor in UNIX 76

The vi editor is a popular text editor that is widely used in Unix-based operating systems. It has 77

several modes that allow the user to perform different functions. The three primary modes of the vi 78

editor are: 79

• Command mode: 80

This is the default mode of vi editor. In this mode, the user can navigate through the text, delete, 81

copy, paste and perform other commands. It is indicated by the absence of the word "INSERT" at the 82



4 Sumit Yadav et al.

bottom left corner of the screen. 83

• Insert mode: 84

In this mode, the user can insert text into the document. It is indicated by the word "INSERT" at the 85

bottom left corner of the screen. 86

• Ex mode: 87

This mode is used to execute commands that are not available in the command mode. It is entered 88

by typing the colon (:) character while in the command mode. 89

Here are some of the most commonly used vi editor commands: 90

Command Description
$ Moves the cursor to the end of the current line.
filename> Opens the specified file in the vi editor.
vi Starts the vi editor.
vi +n Starts the vi editor and positions the cursor at line n.
vi -n Starts the vi editor and positions the cursor n lines from the end of the file.
a Enters insert mode and places the cursor after the current character.
A Enters insert mode and places the cursor at the end of the current line.
i Enters insert mode and places the cursor before the current character.
I Enters insert mode and places the cursor at the beginning of the current line.
o Enters insert mode and starts a new line below the current line.
O Enters insert mode and starts a new line above the current line.
rx Replaces the current character with the character x.
R Enters overwrite mode and replaces characters as you type.
s Deletes the current character and enters insert mode.
S Deletes the current line and enters insert mode.
h Moves the cursor one character to the left.
nh Moves the cursor n characters to the left.
j Moves the cursor one line down.
nj Moves the cursor n lines down.
k Moves the cursor one line up.
nk Moves the cursor n lines up.
enter Moves the cursor to the beginning of the next line.
+ Moves the cursor to the beginning of the next line.
^ Moves the cursor to the beginning of the current line.
b Moves the cursor one word backward.
- Moves the cursor to the beginning of the previous line.
0 Moves the cursor to the beginning of the current line.
$ Moves the cursor to the end of the current line.
e Moves the cursor to the end of the current word.
w Moves the cursor one word forward.
x Deletes the current character.
dw Deletes the current word.
db Deletes the previous word.
d$ Deletes from the current cursor position to the end of the line.
q! Quits the editor without saving changes.
q Quits the editor.
wq Saves changes and quits the editor.

91

92

To operate the vi editor in UNIX, you need to follow the following steps: 93



Journal of Open Aviation Science 5

Open terminal and type "vi <file>"

Press "i" to enter insert mode

Type the text you want to insert

Press "esc" key to return to command mode

Use navigation keys to move around and edit text

Press "esc" and ":" key

Save and exit vi editor
94

2.3 Shell Programming Commands 95

Shell programming commands are a set of commands and instructions that can be used to write 96

scripts and programs in Unix or Linux shell environments. Here are explanations and examples of 97

some commonly used shell programming commands: 98

2.3.1 Common Shells: 99

There are several shells available in Unix or Linux environments. The most commonly used shells 100

are: 101

csh (C Shell): This shell is designed for interactive use and has C language-like syntax. It is mainly 102

used for scripting and interactive use in scientific computing and data processing. 103

bsh (Bourne Shell): This is the oldest Unix shell and is widely used for scripting and system adminis- 104

tration. It supports the basic features of shell programming, such as variables, loops, and conditional 105

statements. 106

sh (Bourne-Again Shell): This is a more recent version of the Bourne shell and is the default shell for 107

most Linux distributions. It has additional features, such as command-line editing, job control, and 108

programmable completion. tcsh (TENEX C Shell): This is an extended version of the C shell that 109

includes additional features such as file name completion, command history, and job control. 110



6 Sumit Yadav et al.

Example: To check which shell is currently being used, you can run the following command: 111

echo $SHELL 112

This will display the path to the current shell being used. 113

2.3.2 Shell Keywords: 114

Shell keywords are built-in commands in Unix or Linux shell environments. These commands are 115

used to perform specific tasks such as input/output operations, conditional branching, and looping. 116

echo: This command is used to display messages or variables on the terminal. 117

read: This command is used to read input from the user or from a file. 118

if fi: This keyword is used to create conditional statements. The code inside the "if" block is executed 119

only if the condition is true. 120

else: This keyword is used in conjunction with the "if" statement to provide an alternative code 121

block to execute if the "if" condition is false. 122

case esac: This keyword is used to create a multiple choice menu. The code inside the "case" block 123

is executed based on the user’s choice. 124

for: This keyword is used to create loops that iterate over a set of values. 125

while: This keyword is used to create loops that execute until a condition becomes false. 126

do: This keyword is used in conjunction with the "for" and "while" keywords to define the code block 127

that is executed during each iteration of the loop. 128

done: This keyword marks the end of a "for" or "while" loop. 129

until: This keyword is used to create loops that execute until a condition becomes true. 130

set: This keyword is used to set shell options or positional parameters. 131

unset: This keyword is used to unset or delete a shell variable or function. 132

readonly: This keyword is used to make a shell variable or function read-only. 133

shift: This keyword is used to shift positional parameters to the left. 134

export: This keyword is used to make a shell variable or function available to subprocesses. 135

break: This keyword is used to break out of a loop. 136

continue: This keyword is used to skip to the next iteration of a loop. 137

exit: This keyword is used to exit the shell or terminate a script. 138

return: This keyword is used to return a value from a function. 139

trap: This keyword is used to set up a signal handler for the shell. 140

wait: This keyword is used to wait for a subprocess to finish executing. 141

eval: This keyword is used to evaluate a string as a shell command. 142

exec: used to replace the current shell process with another command. 143

ulimit: used to set resource limits for the current shell. 144

umask: used to set the file mode creation mask. 145



Journal of Open Aviation Science 7

2.3.3 General shell things: 146

Shbang line: The first line of a shell script that specifies the shell to be used to interpret the script. 147

Comments: Lines that begin with a hash symbol (#) and are ignored by the shell. 148

Wildcards: Special characters that are interpreted by the shell to match filenames or patterns. 149

List variables: Variables that contain a list of values separated by whitespace. 150

Global variables: Variables that are accessible from any part of a script or shell session. 151

Extracting values from variables: Using shell expansions to extract a portion of a variable’s value. 152

Arithmetic operators: Shell built-in commands for performing arithmetic operations. 153

Arguments: The values passed to a shell script or function when it is invoked. Conditional state- 154

ments: Statements that execute different commands based on the truth value of a condition. 155

Loops: Constructs that repeatedly execute a series of commands. 156

Arrays: Variables that can store multiple values indexed by integers. 157

File testing: Shell built-in commands for testing file attributes such as existence, type, and permis- 158

sions. 159

2.4 Shell Programming Questions 160

2.4.1 Concatenation of two strings: 161

To concatenate two strings in shell programming, we can use the + operator. For example, to con- 162

catenate the string "hello" and "world", we can use the following command: 163

[language=bash] str1="hello" 164

str2="world" 165

concatenated=str1str2 166

echo concatenated 167

168

This will output "helloworld". 169

Comparison of two strings: To compare two strings in shell programming, we can use the = operator. 170

For example, to check if the strings "hello" and "world" are equal, we can use the following command: 171

a=10 172

b=20 173

c=30 174

if [ $a -gt $b ] && [ $a -gt $c ]; then 175

echo "Maximum number is $a" 176

elif [ $b -gt $c ]; then 177

echo "Maximum number is $b" 178

else 179

echo "Maximum number is $c" 180

fi 181

182

Maximum of three numbers: To find the maximum of three numbers in shell programming, we can 183

use the if statement. For example, to find the maximum of 10, 20 and 30, we can use the following 184

command: verbatim 185



8 Sumit Yadav et al.

186

a=10 187

b=20 188

c=30 189

if [ $a -gt $b ] && [ $a -gt $c ]; then 190

echo "Maximum number is $a" 191

elif [ $b -gt $c ]; then 192

echo "Maximum number is $b" 193

else 194

echo "Maximum number is $c" 195

fi 196

197

Fibonacci series: To generate a Fibonacci series in shell programming, we can use a loop. For exam- 198

ple, to generate the first 10 numbers in the Fibonacci series, we can use the following command: 199

a=0 200

b=1 201

echo "Fibonacci series:" 202

for (( i=0; i<10; i++ )); do 203

echo $a 204

c=$((a + b)) 205

a=$b 206

b=$c 207

done 208

209

Arithmetic operations using case: To perform arithmetic operations using case statements in shell 210

programming, we can use the case statement. For example, to perform addition, subtraction, multi- 211

plication or division, we can use the following command: 212

213

echo "Enter two numbers:" 214

read a b 215

echo "Enter an operation (add, sub, mul, div):" 216

read op 217

case $op in 218

add) 219

echo "Result: $(($a + $b))" 220

;; 221

sub) 222

echo "Result: $(($a - $b))" 223

;; 224

mul) 225

echo "Result: $(($a * $b))" 226

;; 227

div) 228

echo "Result: $(($a / $b))" 229

;; 230

*) 231

echo "Invalid operation" 232

;; 233



Journal of Open Aviation Science 9

esac 234

235

Process Creation: 236

To write a program to create a process in UNIX algorithm. 237

#include <stdio.h> 238

#include <unistd.h> 239

#include <sys/wait.h> 240

241

int main() { 242

int pid, status; 243

pid = fork(); 244

if (pid < 0) { 245

printf("Error: Failed to create process.\n"); 246

} 247

else if (pid == 0) { 248

printf("Child process: pid = %d\n", getpid()); 249

// execute command here 250

} 251

else { 252

printf("Parent process: pid = %d\n", getpid()); 253

waitpid(pid, &status, 0); 254

} 255

return 0; 256

} 257

258

To write a program for executing a commands. 259

echo Program for executing UNIX command using shell programming 260

echo Welcome 261

ps 262

exec wc e 263

264

To create child with sleep commands. 265

#include <stdio.h> 266

#include <unistd.h> 267

268

int main() { 269

int pid; 270

pid = fork(); 271

272

if (pid < 0) { 273

printf("Error: Failed to create process.\n"); 274

} 275

else if (pid == 0) { 276

printf("This is child process: pid = %d\n", getpid()); 277

sleep(2); // sleep for 2 seconds 278

} 279



10 Sumit Yadav et al.

else { 280

printf("Parent process: pid = %d\n", getpid()); 281

} 282

return 0; 283

} 284

285

To create child with sleep commands using getpid. 286

#include <stdio.h> 287

#include <unistd.h> 288

289

int main() { 290

int pid; 291

pid = fork(); 292

293

if (pid < 0) { 294

printf("Error: Failed to create process.\n"); 295

} 296

else if (pid == 0) { 297

// Child process 298

printf("child process\n"); 299

printf("child process id is %d\n", getpid()); 300

printf("its parent process id is %d\n", getppid()); 301

sleep(5); // sleep for 5 seconds 302

printf("child process after sleep=5\n"); 303

printf("child process id is %d\n", getpid()); 304

printf("its parent process id is %d\n", getppid()); 305

} 306

else { 307

// Parent process 308

printf("parent process\n"); 309

sleep(10); // sleep for 10 seconds 310

printf("child process after sleep=10\n"); 311

printf("child id is %d\n", pid); 312

printf("parent id is %d\n", getpid()); 313

printf("parent terminates\n"); 314

} 315

316

return 0; 317

} 318

319

To create a program for signal handeling in UNIX. 320

echo program for performing KILL operations 321

ps 322

echo enter the pid 323

read pid 324

kill -9 $pid 325

echo 326

finished 327



Journal of Open Aviation Science 11

328

To perform wait commands using c program. 329

#include <stdio.h> 330

#include <unistd.h> 331

#include <sys/wait.h> 332

333

int main() { 334

int pid, status; 335

pid = fork(); 336

337

if (pid < 0) { 338

printf("Error: Failed to create process.\n"); 339

} 340

else if (pid == 0) { 341

// Child process 342

for (int i = 1; i <= 10; i++) { 343

printf("Child process: i = %d\n", i); 344

} 345

_exit(0); 346

} 347

else { 348

// Parent process 349

wait(&status); 350

printf("Parent process: Child process terminated with status %d\n", status); 351

} 352

return 0; 353

} 354

355

To write a C program to simulate the operations of "ls’ commands in UNIX. 356

#include<stdio.h> 357

#include<sys/types.h> 358

#include<dirent.h> 359

#include<stdlib.h> 360

361

int main(int argc, char *argv[]) 362

{ 363

DIR *dp; 364

struct dirent *dirp; 365

if(argc<2) 366

{ 367

printf("\n You have provided only 1 argument\n"); 368

exit(0); 369

} 370

if((dp=opendir(argv[1]))==NULL) 371

{ 372

printf("\nCannot open %s file!\n",argv[1]); 373

exit(1); 374

} 375



12 Sumit Yadav et al.

while((dirp=readdir(dp))!=NULL) 376

{ 377

printf("%s\n",dirp->d_name); 378

} 379

closedir(dp); 380

} 381

382

SHORTEST JOB FIRST 383

To write a C program to implement the CPU scheduling algorithm for Shorter job. 384

include <stdio.h> 385

typedef struct Process int pid; int ser; int wait; Process; 386

int main(void) int i, j, n, tot = 0, avwait, totwait = 0, tturn = 0, aturn; Process p[20], tmp; 387

// Get the number of processes and their service time printf("Enter the number of processes: "); 388

scanf(" 389

for (i = 0; i < n; i++) printf("Enter the service time for process scanf(" 390

// Validate the input to ensure that the entered service time is not negative if (p[i].ser < 0) printf("Service 391

time cannot be negative."); return 1; 392

p[i].pid = i + 1; p[i].wait = 0; 393

// Sort the processes based on their service time using bubble sort for (i = 0; i < n - 1; i++) for (j = i 394

+ 1; j < n; j++) if (p[i].ser > p[j].ser) tmp = p[i]; p[i] = p[j]; p[j] = tmp; 395

// Calculate the waiting and turnaround time for each process and the total waiting and turnaround 396

time printf("PID"); 397

for (i = 0; i < n; i++) tot = tot + p[i].ser; tturn = tturn + tot; p[i + 1].wait = tot; totwait = totwait + 398

p[i].wait; printf(" 399

// Calculate the average waiting and turnaround time avwait = totwait / n; aturn = tturn / n; 400

// Display the results printf("TOTALWAITINGTIME: printf("AVERAGEWAITINGTIME: printf("TOTAL401
TURNAROUND TIME: printf("AVERAGE TURNAROUND TIME: 402

return 0; 403

ROUND ROBIN 404

To write a C program to simulate the CPU scheduling algorithm for round robin 405

406

#include<stdio.h> 407

408

struct Process { 409

char pname[5]; 410

int pburst, pburst1, wtime, endtime, arrivt, is_processed; 411

}; 412

413

int n, tq; 414

415

void input(struct Process p[]); 416



Journal of Open Aviation Science 13

void initialize(struct Process p[]); 417

void calculate(struct Process p[]); 418

void display_waittime(struct Process p[]); 419

420

int main() { 421

struct Process p[5]; 422

input(p); 423

initialize(p); 424

calculate(p); 425

display_waittime(p); 426

return 0; 427

} 428

429

void input(struct Process p[]) { 430

printf("Enter the total number of processes: "); 431

scanf("%d", &n); 432

for (int i = 0; i < n; i++) { 433

printf("Enter process name: "); 434

scanf("%s", p[i].pname); 435

printf("Enter process burst time: "); 436

scanf("%d", &p[i].pburst); 437

printf("Enter process arrival time: "); 438

scanf("%d", &p[i].arrivt); 439

} 440

printf("\nEnter the time quantum/Time Slice: "); 441

scanf("%d", &tq); 442

} 443

444

void initialize(struct Process p[]) { 445

for (int i = 0; i < n; i++) { 446

p[i].pburst1 = p[i].pburst; 447

p[i].wtime = 0; 448

p[i].endtime = 0; 449

p[i].is_processed = 0; 450

} 451

} 452

453

void calculate(struct Process p[]) { 454

int i, j = 0, k = 0, flag = 1, count = 0; 455

printf("\n---GANTT CHART---\n"); 456

printf("0 | "); 457

while (flag) { 458

for (i = 0; i < n; i++) { 459

if ((k < n) && (p[i].arrivt <= count) && (p[i].is_processed == 0)) { 460

p[i].wtime = count - p[i].arrivt; 461

p[i].endtime = count; 462

p[i].is_processed = 1; 463

k++; 464

} 465

if ((p[i].pburst1 > tq) && (p[i].arrivt <= count)) { 466



14 Sumit Yadav et al.

if (p[i].is_processed == 1) { 467

p[i].is_processed = 0; 468

} else { 469

p[i].wtime = p[i].wtime + (count - p[i].endtime); 470

} 471

count = count + tq; 472

p[i].pburst1 = p[i].pburst1 - tq; 473

p[i].endtime = count; 474

printf("%d %s| ", count, p[i].pname); 475

} else if ((p[i].pburst1 > 0) && (p[i].pburst1 <= tq) && (p[i].arrivt <= count)) { 476

if (p[i].is_processed == 1) { 477

p[i].is_processed = 0; 478

} else { 479

p[i].wtime = p[i].wtime + (count - p[i].endtime); 480

} 481

count = count + p[i].pburst1; 482

p[i].endtime = count; 483

printf("%d %s| ", count, p[i].pname); 484

p[i].pburst1 = 0; 485

j++; 486

} else if (j == n) { 487

flag = 0; 488

} 489

} 490

} 491

} 492

493

void display_waittime() { 494

int i; 495

float tot = 0, turn = 0; 496

497

for (i = 0; i < n; i++) { 498

printf("\n\nWaiting time for Process %s is %d", a[i].pname, a[i].wtime); 499

tot += a[i].wtime; 500

turn += a[i].endtime - a[i].arrivt; 501

} 502

503

printf("\n\n\tAverage waiting time=%.2f", tot / n); 504

printf("\n\tAverage turnaround time=%.2f\n", turn / n); 505

} 506

507

PRIORITY SCHEDULING 508

To write a C program to implement CPU scheduling algorithm for priority scheduling. 509

510

#include<stdio.h> 511

#include<stdlib.h> 512

513

void main() 514



Journal of Open Aviation Science 15

{ 515

int i,j,n,t,turn[20],burst[20],p[20],wt[20],c[20]; 516

float await,aturn,twait=0,tturn=0; 517

printf("\nEnter the value of n:"); 518

scanf("%d",&n); 519

printf("\n Enter the process no burst and arrivaltime"); 520

for(i=0;i<n;i++) 521

{ 522

scanf("%d",&c[i]); 523

scanf("%d",&burst[i]); 524

525

scanf("%d",&p[i]); 526

} 527

for(i=0;i<n;i++) 528

for(j=i+1;j<n;j++) 529

{ 530

if(p[i]>p[j]) 531

{ 532

t=p[i]; 533

p[i]=p[j]; 534

p[j]=t; 535

t=burst[i]; 536

burst[i]=burst[j]; 537

burst[j]=t; 538

t=c[i]; 539

c[i]=c[j]; 540

c[j]=t; 541

} 542

} 543

for(i=0;i<n;i++) 544

{ 545

if(i==0) 546

{ 547

wt[i]=0; 548

turn[i]=burst[i]; 549

} 550

else 551

{ 552

turn[i]=turn[i-1]+burst[i]; 553

wt[i]=turn[i]-burst[i]; 554

twait=twait+wt[i]; 555

tturn=tturn+turn[i]; 556

} 557

await=twait/n; 558

aturn=tturn/n; 559

printf("pno\tbtime\tatime\twtime\tttime"); 560

for(i=0;i<n;i++) 561

{ 562

printf("\n%d\t%d\t%d\t%d\t%d\n",c[i],burst[i],p[i],wt[i],turn[i]); 563

} 564



16 Sumit Yadav et al.

printf("\n The average waiting time is:%f",await); 565

printf("\n The average turn around time is:%f",aturn); 566

} 567

} 568

569

FIRST COME FIRST SERVE 570

To write a C program to implement the CPU scheduling algorithm for FIRST COME FIRST SERVE. 571

572

#include<stdio.h> 573

574

void main() 575

{ 576

int i, j, n, t; 577

int turn[20], burst[20], arrival[20], waiting[20], process[20]; 578

float avg_wait, avg_turn, total_wait = 0, total_turn = 0; 579

580

printf("Enter the number of processes: "); 581

scanf("%d", &n); 582

583

printf("Enter the process number, burst time, and arrival time:\n"); 584

for (i = 0; i < n; i++) { 585

scanf("%d %d %d", &process[i], &burst[i], &arrival[i]); 586

} 587

588

// sort processes based on arrival time 589

for (i = 0; i < n - 1; i++) { 590

for (j = 0; j < n - i - 1; j++) { 591

if (arrival[j] > arrival[j + 1]) { 592

// swap arrival times 593

t = arrival[j]; 594

arrival[j] = arrival[j + 1]; 595

arrival[j + 1] = t; 596

597

// swap burst times 598

t = burst[j]; 599

burst[j] = burst[j + 1]; 600

burst[j + 1] = t; 601

602

// swap process numbers 603

t = process[j]; 604

process[j] = process[j + 1]; 605

process[j + 1] = t; 606

} 607

} 608

} 609

610

// calculate waiting time and turn around time 611

for (i = 0; i < n; i++) { 612



Journal of Open Aviation Science 17

if (i == 0) { 613

waiting[i] = 0; 614

turn[i] = burst[i]; 615

} else { 616

turn[i] = turn[i - 1] + burst[i]; 617

waiting[i] = turn[i] - burst[i] - arrival[i]; 618

} 619

620

total_wait += waiting[i]; 621

total_turn += turn[i]; 622

} 623

624

avg_wait = total_wait / n; 625

avg_turn = total_turn / n; 626

627

printf("Process\tBurst\tArrival\tWaiting\tTurnaround\n"); 628

for (i = 0; i < n; i++) { 629

printf("%d\t%d\t%d\t%d\t%d\n", process[i], burst[i], arrival[i], waiting[i], turn[i]);630
} 631

632

printf("Average waiting time: %.2f\n", avg_wait); 633

printf("Average turnaround time: %.2f\n", avg_turn); 634

} 635

636

PRIORITY SCHEDULING: 637

To write a C program to implement CPU scheduling algorithm for priority scheduling. 638

639

#include <stdio.h> 640

#include <stdlib.h> 641

642

int main() { 643

int base[20], limit[20], n, i, segment_number, offset, physical_address; 644

645

printf("Program for segmentation\n"); 646

647

printf("Enter the number of segments: "); 648

scanf("%d", &n); 649

650

printf("Enter the base address and limit register for each segment:\n"); 651

for (i = 0; i < n; i++) { 652

printf("Segment %d:\n", i); 653

scanf("%d%d", &base[i], &limit[i]); 654

} 655

656

printf("Enter the logical address (segment number and offset): "); 657

scanf("%d%d", &segment_number, &offset); 658

659

if (segment_number < 0 || segment_number >= n) { 660



18 Sumit Yadav et al.

printf("Invalid segment number\n"); 661

exit(1); 662

} 663

664

if (offset < 0 || offset >= limit[segment_number]) { 665

printf("Offset out of range\n"); 666

exit(1); 667

} 668

669

physical_address = base[segment_number] + offset; 670

printf("\n\tSegmentNo.\tBaseAdd.\tPhysicalAdd.\n\t%d\t\t%d\t\t%d\n", segment_number, base[segment_number], physical_address);671

672

return 0; 673

} 674

675

676

Memory Management Scheme- Paging 677

#include <stdio.h> 678

#include <stdlib.h> 679

680

int main(void) 681

{ 682

int base[20], limit[20], num_segments, logical_address, segment_number, offset; 683

printf("Program for segmentation\n"); 684

685

// Input the number of segments and their base and limit registers 686

printf("Enter the number of segments: "); 687

scanf("%d", &num_segments); 688

printf("Enter the base address and limit register for each segment:\n"); 689

for (int i = 0; i < num_segments; i++) { 690

scanf("%d %d", &base[i], &limit[i]); 691

} 692

693

// Input the logical address 694

printf("Enter the logical address: "); 695

scanf("%d", &logical_address); 696

697

// Find the segment number and offset from the logical address 698

segment_number = -1; 699

offset = -1; 700

for (int i = 0; i < num_segments; i++) { 701

if (logical_address >= base[i] && logical_address < (base[i] + limit[i])) { 702

segment_number = i; 703

offset = logical_address - base[i]; 704

break; 705

} 706

} 707

708

// If the logical address is valid, compute the physical address and print it 709



Journal of Open Aviation Science 19

if (segment_number >= 0 && offset >= 0) { 710

int physical_address = base[segment_number] + offset; 711

printf("\n\tSegmentNo.\tBaseAdd.\tPhysicalAdd.\n\t%d\t\t%d\t\t%d\n", segment_number, base[segment_number], physical_address);712

return 0; 713

} else { 714

printf("\nInvalid segment\n"); 715

return 1; 716

} 717

} 718

719

720

Producer Consumer Problem using Semaphore 721

To write a C program to implement the Producer consumer Problem(Semaphore) 722

#include <stdio.h> 723

#include <stdlib.h> 724

725

#define MAX_ITEMS 10 726

int buffer[MAX_ITEMS]; 727

int empty, full = 0, mutex = 1; // Semaphores 728

int item, itemC, n; 729

int in = 0, out = 0; 730

731

int wait(int s) { 732

return --s; 733

} 734

735

int signal(int s) { 736

return ++s; 737

} 738

739

void producer() { 740

mutex = wait(mutex); 741

empty = wait(empty); 742

full = signal(full); 743

printf("Enter an item: "); 744

scanf("%d", &item); 745

buffer[in] = item; 746

in = (in + 1) % n; 747

mutex = signal(mutex); 748

} 749

750

void consumer() { 751

mutex = wait(mutex); 752

full = wait(full); 753

empty = signal(empty); 754

itemC = buffer[out]; 755

printf("Consumed item = %d \n", itemC); 756

out = (out + 1) % n; 757



20 Sumit Yadav et al.

mutex = signal(mutex); 758

} 759

760

void main() { 761

printf("Enter the value of n: "); 762

scanf("%d", &n); 763

empty = n; 764

765

int choice; 766

printf("\nChoices: \n1. Producer \n2. Consumer \n3. Exit"); 767

768

while (1) { 769

printf("\nEnter your choice: "); 770

scanf("%d", &choice); 771

772

switch (choice) { 773

case 1: 774

if (mutex == 1 && empty != 0) 775

producer(); 776

else 777

printf("Buffer is full \n"); 778

break; 779

case 2: 780

if (mutex == 1 && full != 0) 781

consumer(); 782

else 783

printf("Buffer is empty \n"); 784

break; 785

default: 786

exit(0); 787

break; 788

} 789

} 790

} 791

792

Memory Management Scheme - Segmentation 793

To write a C program to implement memory management using segmentation 794

795

796

#include <stdio.h> 797

#include <stdlib.h> 798

799

void main() { 800

int base_address[20], limit[20], num_segments, memory_limit; 801

int segment_number, displacement, physical_address; 802

803

printf("Enter number of segments: "); 804

scanf("%d", &num_segments); 805



Journal of Open Aviation Science 21

printf("Enter memory limit: "); 806

scanf("%d", &memory_limit); 807

808

printf("\nEnter base address and limit of each segment:\n"); 809

for (int i = 0; i < num_segments; i++) { 810

printf("Segment %d: ", i); 811

scanf("%d %d", &base_address[i], &limit[i]); 812

if (base_address[i] + limit[i] > memory_limit) { 813

printf("Invalid memory limit \n"); 814

exit(0); 815

} 816

} 817

818

printf("\nEnter the segment number and displacement value: "); 819

scanf("%d %d", &segment_number, &displacement); 820

821

if (segment_number >= num_segments || displacement >= limit[segment_number]) { 822

printf("Invalid segment number or displacement.\n"); 823

exit(0); 824

} 825

826

// Calculate the physical address 827

physical_address = base_address[segment_number] + displacement; 828

printf("\nSegment No.\tBase Address\tPhysical Address\n"); 829

printf("%d\t\t%d\t\t%d\n", segment_number, base_address[segment_number], physical_address);830

} 831

832

3. Discussions 833

The programs listed above cover a wide range of topics related to UNIX commands and shell pro- 834

gramming. The first program deals with basic UNIX commands such as displaying date and time, 835

printing text in the terminal, displaying the current working directory, and clearing the screen. It 836

also covers terminal commands such as man, help, ls, cd, cat, mv, rm, sort, cp, wc, pg, head, tail, and 837

more. 838

The second program is focused on the vi editor in UNIX and provides an overview of the various 839

modes such as commands and input mode. It also covers commands such as vi +n <filename>, vi -n 840

<filename>, and various other commands that can be used in vi. 841

The third program deals with UNIX shell programming commands, covering various keywords such 842

as echo, read, if fi, else, case, esac, for, while, do, done, until, set, unset, readonly, shift, export, break, 843

continue, exit, return, trap, wait, eval, exec, ulimit, and umask. It also covers general shell concepts 844

such as comments, wildcards, variables, arithmetic operators, conditional statements, loops, arrays, 845

and file testing. 846

The questions posed at the end of the program cover various programming concepts such as string 847

concatenation, comparison, arithmetic operations using case, process creation, executing commands, 848

sleep commands, signal handling, wait commands, file reading and writing, and memory manage- 849

ment schemes such as paging and segmentation. 850

Overall, these programs provide a good overview of various concepts related to UNIX commands 851



22 Sumit Yadav et al.

and shell programming and can be useful for anyone learning or working with UNIX systems. 852

4. Conclusion 853

In conclusion, the topics covered in this report include various commands and operations in Unix, Vi 854

editor, and Unix shell programming. The first part of the report discussed the use of Unix commands 855

for displaying date and time, calendar, printing text, and manipulating directories and files using 856

various terminal commands. The second part of the report focused on vi editor commands, including 857

input and commands modes, navigating files, editing text, and saving changes. 858

Finally, the report discussed Unix shell programming, including common shells and shell keywords, 859

general shell concepts such as wildcards, variables, conditional statements, loops, and file testing. 860

The report also provided sample questions covering string manipulation, arithmetic operations, pro- 861

cess creation, file reading and writing, and memory management schemes such as paging and seg- 862

mentation. 863

Overall, this report provides an introduction to the basics of Unix, Vi editor, and Unix shell pro- 864

gramming, which are essential skills for any programmer or system administrator working in a 865

Unix environment. 866


	Introduction
	AIMS
	Basic UNIX commands
	Vi editor in UNIX
	Shell Programming Commands
	Common Shells:
	Shell Keywords:
	General shell things:

	Shell Programming Questions
	Concatenation of two strings:


	Discussions
	Conclusion

