
Lab Report on A Gentics Algorithm

Sumit Yadav (076BCT088)
Institute of Engineering, Pulchowk Campus

March 27, 2023

Abstract

The aim of this lab report is to design and implement a genetic algorithm for an AI
painter agent that can paint rooms effectively. The AI painter agent is represented as
a set of genes, which determines the agent’s behavior. The genetic algorithm works by
evolving the agent’s genes over a series of generations. The algorithm involves gener-
ating an initial population of agents with random genes, evaluating the fitness of each
agent in the population, selecting the fittest agents as parents for the next generation,
recombining the genes of the parents to produce offspring, and introducing mutations to
the offspring’s genes. The fitness of an agent is evaluated by simulating its behavior in
painting five different rooms, and computing the average score obtained by the agent in
these simulations.

The genetic algorithm is implemented in Python, and uses the NumPy library for
array computations. The AI painter agent is implemented as a function that takes in a
set of genes and a room, and returns the agent’s score, the number of painted cells, the
number of empty cells, and the number of overlap cells. The genetic algorithm is tested on
a set of predefined rooms, and the results show that the evolved agents are able to paint
the rooms more effectively than the initial population of agents. The genetic algorithm
can be extended to other domains where the agent’s behavior can be represented as a set
of genes, such as game playing, robot control, and optimization problems.

1 Introduction

A genetic algorithm (GA) is a type of optimization algorithm that is based on the principles of
natural selection and genetics. It is a search heuristic that is used to find approximate solutions
to optimization and search problems. GAs are inspired by the process of evolution, in which
organisms with advantageous traits are more likely to survive and reproduce, passing their
traits on to their offspring.

In a genetic algorithm, a population of potential solutions to a problem is generated and
evaluated for fitness, which is a measure of how well a particular solution meets the criteria for a
successful solution. The fittest individuals are selected for reproduction, and genetic operators
such as crossover and mutation are applied to generate new offspring. The new offspring are
then evaluated for fitness, and the process is repeated until a satisfactory solution is found or
a termination condition is met.

GAs can be applied to a wide range of optimization problems, including those that are
difficult or impossible to solve using traditional mathematical or analytical methods. They
have been used in a variety of applications such as engineering design, scheduling, and financial
portfolio optimization. While GAs do not guarantee finding the optimal solution, they can
often find good solutions in a reasonable amount of time, making them a valuable tool for
solving complex optimization problems.

1



1.1 Algorithm:

• Initialize population: Generate an initial population of random solutions to the problem.
This population should be large enough to provide sufficient genetic diversity.

• Evaluate fitness: Evaluate the fitness of each solution in the population using an objective
function that measures how well each solution meets the criteria for a successful solution.

• Select parents: Select a subset of the population to act as parents for the next generation.
The selection process can be based on various criteria such as fitness proportionate se-
lection or tournament selection. The selection process should favor solutions with higher
fitness scores.

• Reproduce: Create new solutions by applying genetic operators such as crossover and
mutation to the selected parents. Crossover involves swapping genetic material between
two parents to create new offspring, while mutation involves making random changes to
a single parent to create a new offspring.

• Evaluate fitness: Evaluate the fitness of each new solution in the population.

• Select survivors: Select the fittest solutions from the combined population of parents
and offspring to survive into the next generation. The selection process can be based on
various criteria such as elitism or fitness proportionate selection.

• Repeat: Repeat steps 3-6 until a termination condition is met, such as a satisfactory
solution being found or a maximum number of iterations being reached. The best solution
found during the process is typically returned as the final solution.

1.2 Types:

There are several types of genetic algorithms, each with its own specific characteristics and
applications. Some common types include:

• Simple genetic algorithm: This is the most basic form of genetic algorithm that follows
the standard algorithm flow outlined in the previous question.

• Adaptive genetic algorithm: This type of genetic algorithm adapts the genetic operators,
such as mutation and crossover, according to the current state of the population.

• Hierarchical genetic algorithm: This type of genetic algorithm is based on a hierarchy
of subpopulations, where each subpopulation is evolved independently and the fittest
individuals from each subpopulation are selected to form the next generation.

• Multi-objective genetic algorithm: This type of genetic algorithm is designed to optimize
multiple objectives simultaneously. Instead of a single fitness function, multiple fitness
functions are used to evaluate the solutions.

• Parallel genetic algorithm: This type of genetic algorithm uses parallel processing to
speed up the evolution process by simultaneously evaluating multiple individuals in the
population.

• Constraint-handling genetic algorithm: This type of genetic algorithm is designed to
handle constraints, which are limitations or restrictions on the possible solutions.

• Immune system-inspired genetic algorithm: This type of genetic algorithm is inspired by
the immune system and uses the principles of immunology to solve optimization problems.

2



1.3 Notion of Natural Selection:

The genetic algorithm is inspired by the natural selection process, where the fittest individuals
are selected for reproduction and produce offspring with inherited characteristics. This concept
is applied to search problems, where a set of solutions is considered, and the fittest solutions
are selected to form the next generation. The genetic algorithm consists of five phases:

1. Initial population: A population of solutions is generated randomly. The population
size should be large enough to provide sufficient genetic diversity to explore the solution
space.

2. Fitness function: A fitness function is used to evaluate the fitness of each solution in
the population. The fitness function measures how well each solution meets the criteria
for a successful solution. Solutions with higher fitness scores are more likely to be selected
for the next generation.

3. Selection: A subset of solutions is selected from the current population to act as parents
for the next generation. The selection process can be based on various criteria such as
fitness proportionate selection or tournament selection. The selection process should favor
solutions with higher fitness scores.

4. Crossover: Crossover involves swapping genetic material between two parents to create
new offspring. This process creates new solutions that combine the best features of both
parents. The crossover operator can be performed in various ways, such as single-point
crossover, two-point crossover, or uniform crossover.

5. Mutation: Mutation involves making random changes to a single parent to create a
new offspring. The mutation operator is used to introduce new genetic material into the
population, which helps to explore the solution space. The mutation operator can be
performed in various ways, such as bit-flip mutation or swap mutation.

These five phases are repeated iteratively until a termination condition is met, such as
a satisfactory solution being found or a maximum number of iterations being reached. The
best solution found during the process is typically returned as the final solution. The genetic
algorithm is a powerful optimization algorithm that can solve complex problems in various
domains.

2 Experimental Setup

For this lab assignment, the experiment setup consisted of using a laptop with the following
specifications:

1. Processor: Intel i5 8th generation

2. RAM: 8 GB

3. Operating System: Linux

The experiments were conducted on this laptop using Python.(Notebook)

3



3 Analysis

Let’s imagine, we have a painter robot similar to the robot which picked up cans in the lectures.
We will use this robot to paint the floor of a room. To make it interesting, the painter starts at
a random place in the room, and paints continuously. We will also imagine that there is exactly
enough paint to cover the floor. This means that it is wasteful to visit the same spot more than
once or to stay in the same place. To see if there is a optimal set of rules for the painter to
follow, you will create a genetic algorithm. You may write your own code from scratch or use
or painter play py as starting points.

As inputs, this function receives

1. A chromosome: A 1x54 array of numbers between 0 and 3 that shows how to respond
(0: no turn, 1:turn left, 2:turn right, 3: random turn left/right) in each of the 54 possible
states. The state is the state of the squares forward/left/right and the current square.
Let [c, f, l, r] denote states of the current square, forward square, left square and right
square respectively. Write 0 for empty, 1 for wall/obstruction and 2 for painted. Note
that c 0, 2 and f, l, r 0, 1, 2 so there are 2 × 33 = 54 possible states.

2. An environment: A 2D array representing a rectangular room. Empty (paintable) space
is represented by a zero, while furniture or extra walls are represented by ones. Outside
walls are automatically created by painter play().

The function painter play() then uses the rule set to guide a painter, initially placed in the
room with a random position and direction, until the paint can is empty. Note that the painter
does not move when it tries to walk into a wall or furniture. The efficiency (total fraction of
paintable space covered) is then given as an output, as well as the X-Y trajectory (i.e. the
positions of the painter at each time step) of the painter. To see that the painter works, you
can try passing it an empty room for an environment and a trivial chromosome. For example,
a chromosome consisting of all 3s produces a kind of random walk. Now do the following:

3.1 Question 1

Think of a simple strategy for the painter to cover a lot of space in an empty room.
Describe this strategy in a few words or sketch it, but do not try to encode it in
the chromosome.

One simple strategy for the painter to cover a lot of space in an empty room could be
to move in a zigzag pattern across the room. The painter could start at one corner of the
room and move in a straight line to the opposite corner, then turn 90 degrees and move in
a straight line back to the other side, repeating this pattern until the entire room is covered.
This would ensure that the painter covers every part of the room while minimizing overlap and
backtracking.

3.2 Question 2

Create 50 random chromosomes in a 50x54 matrix, as well as a 20x40 empty room.
Create a genetic algorithm to evolve this population over 200 generations, playing
each chromosome several times and storing the chromosomes average efficiency as
the fitness. You may choose any rule for picking the next generation from the
previous one so long as it includes crossovers and mutation and that individuals
with higher fitness are more likely to have offspring in next generation. (An ex-
ample is to use single-point crossover with a mutation rate of 0.002 per locus per
generation.) Plot the final set of chromosomes. Plot an example trajectory of one

4



of the more successful chromosomes (or make a video). Is this what you expected?

Code is in the Attached file.

3.3 Question 3

Plot the average fitness in the population vs generation. You will likely see large
sudden jumps in fitness, corresponding to strategic innovations. In your own words,
write down two possible examples of an innovation that would increase fitness.

Code is in the Attached file.

3.4 Question 4

Add some furniture to the empty room (about 100 square metres in total) and use
one of your highly evolved chromosomes, and plot the trajectory (or make a video).
How does the efficiency compare to that in an empty room? If the strategy fails,
how does it fail? Now try running the genetic algorithm with your new furnished
room from the start. How does the strategy compare to the empty room strategy?

Code is in the Attached file.

4 Conclusion

In conclusion, the analysis presented in this document focuses on creating a genetic algorithm
for a painter robot to efficiently cover the floor of a room with paint. The algorithm receives a
chromosome consisting of a 1x54 array of numbers between 0 and 3 and an environment rep-
resented by a 2D array. The efficiency of the algorithm is determined by the total fraction of
paintable space covered. The analysis answers four questions: 1) suggesting a simple strategy
for the painter, 2) creating and evolving 50 random chromosomes over 200 generations using a
genetic algorithm, 3) plotting the average fitness vs. generation and giving two possible exam-
ples of innovations that increase fitness, and 4) testing the algorithm’s efficiency in a furnished
room. Overall, this analysis provides a comprehensive approach to optimizing a painter robot’s
efficiency in covering the floor of a room with paint.

References

1. McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.

2. Widrow, B., and Hoff, M. E. (1960). Adaptive switching circuits. IRE WESCON Con-
vention Record, 96-104.

3. Haykin, S. (1994). Neural networks: a comprehensive foundation (Vol. 2). Prentice Hall
PTR.

4. Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning representations by
back-propagating errors. nature, 323(6088), 533-536.

5



5. Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. Neural net-
works for perception, 1-42.

6. Fiona Skerman Lab 6: Genetic Algorithms https://fskerman.github.io/Lab6 resit.pdf

Results

Here is a graph showing the results of xpos and ypos of painting robot:

Figure 1: Plot of xpos and ypos of painting robot

6


