Lab Report on An Artificial Neural Network

Sumit Yadav (076BCTO088)
Institute of Engineering, Pulchowk Campus

February 18, 2023

Abstract

Artificial Neural Networks (ANNs) are computational models inspired by the struc-
ture and function of the human brain, designed to solve various complex problems. The
behavior of an ANN depends on both the weights and the input-output function specified
for the units. There are three types of transfer functions: linear, threshold, and sigmoid.
To make an ANN that performs a specific task, the units must be connected, and weights
on the connections should be set appropriately. ANNs can be trained by presenting them
with training examples and using the Delta Rule or Backpropagation algorithm to adjust
the weights. The Adaline Learning algorithm uses the Delta Rule, while Backpropaga-
tion provides a computational efficient method for training multi-layer networks. These
algorithms update the weights of the connections to produce better approximations of the
desired output, ultimately making ANNs powerful tools for problem-solving in various
fields.

1 Introduction

Artificial Neural Networks (ANN) are computational models that mimic the structure and
function of the human brain. ANNs consist of interconnected processing units (neurons) that
work together to learn and solve complex problems. The behavior of an ANN depends on the
weights and the transfer function specified for the units. The transfer function can be linear,
threshold, or sigmoid, and the weights determine the strength of the influence between units.

Two popular learning algorithms for training ANNs are Adaline learning and Backpropa-
gation learning. Adaline learning uses the Delta Rule to adjust the weights and the bias to
minimize the difference between the actual output and the desired output. Backpropagation
learning is a computational efficient method for training multi-layer networks. It propagates
the errors backward through the weights of the hidden units and adjusts the weights to reduce
the error.

1.1 Adaline Learning:

Adaline learning, also known as the least mean squares (LMS) or Widrow-Hoff rule, uses the

Delta Rule to adjust the weights and the bias. The Delta Rule updates the weights and the bias

based on the difference between the actual output and the desired output. Adaline learning is

a supervised learning algorithm that requires a training set of input-output pairs to learn from.
Steps involved in Adaline Learning:

1. Initialize the weights to small random values and select a learning rate, o

2. For each input vector s, with target output t, set the inputs to s



3. Compute the neuron inputs y;, = b+ >, z;w;
4. Compute the error, 6 =1t — y;,

5. Update the bias and weights using the delta rule:

bnew - bold +ad
Wi new = Wi old + aéxi

6. Stop if the largest weight change across all the training samples is less than a specified
tolerance, otherwise cycle through the training set again

1.2 Backpropagation Learning:

Backpropagation learning is a popular algorithm for training multi-layer ANNs. It uses the
chain rule of differentiation to propagate the errors backward through the weights of the hidden
units and adjust the weights to reduce the error. Backpropagation learning requires a training
set of input-output pairs and is a supervised learning algorithm.

Steps involved in Backpropagation:

1. Initialize the weights to small random values
2. Feed the training sample through the network and determine the final output

3. Compute the error for each output unit, for unit £ it is:
Or = (te — Y).S (Yink)

4. Propagate the delta terms (errors) back through the weights of the hidden units where
the delta input for the jth hidden unit is:

Oin,j = f/(Zm,j) Z Ok Wi,
k

5. Calculate the weight correction term for each output unit, for unit £ it is:

Awj, = adyz;

6. Calculate the weight correction term for the hidden units:

Awij = aéin,jxi

7. Update the weights:

w;;(new) = wyj(old) + Aw;;

8. Test for stopping (maximum epoch, small changes, etc.)



2 Experimental Setup

For this lab assignment, the experiment setup consisted of using a laptop with the following
specifications:

1. Processor: Intel i5 8th generation
2. RAM: 8 GB
3. Operating System: Linux

The experiments were conducted on this laptop using Python.(Notebook)

3 Analysis

3.1 Question 1

Design a McCulloch-Pitts neural network which behaves as AND function using
Adaline learning. Consider unipolar case. Perform analysis by varying parameters

3.2 Question 2

Similarly, develop a McCulloch-Pitts neural net for OR, NAND and NOR gate and
draw neural nets.
Code

\begin{lstlisting} [language=Python]
\def adaline(X,y):

w = np.zeros(2)
b=20.0

alpha = 0.1
iterations = 10
deltas = []

for iteration in range(iterations):
for i in range(4):
y_in = b + np.dot(X[i],w)
y_out = np.where(y_in >=0,1,0)
delta = y[i] - y_out
w += alphax*deltaX[i]
b += alpha*delta
deltas.append(delta)
print(’Weight’,w,’bias’,b,’\n’)
for i in range(4):
y_in = np.dot(X[i],w) +Db
y_out = np.where(y_in >= 0,1,0)
print(’input’, X[i], ’output’, y_out)
print(’\n’)
return deltas,w,b

AND gate

X = np.array([[0, 0], [0, 1], [1, 0], [1, 11D
y = np.array([0, O, 0, 1]1)



delta,w,b = adaline(X,y)

OR gate
X = np.array([[0, 0], [0, 1], [1, 0], [1, 111
y = np.array([0, 1, 1, 1])
delta,w,b = adaline(X,y)
NAND gate
X = np.array([[0, 0], [0, 1], [1, 01, [1, 111)

y = np.array([1, 1, 1, 0])
delta,w,b = adaline(X,y)

NOR gate

X = np.array([[0, 0], [0, 1], [1, O], [1, 11D)
y = np.array([1, 0, 0, 01)
delta,w,b = adaline(X,y)

3.3 Question 3

Perform test for bipolar model as well.
Code

\begin{lstlisting}[language=Python]
\def adaline(X,y):
w = np.zeros(2)
b=20.0
alpha = 0.1
iterations = 10
deltas = []
for iteration in range(iterations):
for i in range(4):
y_in = b + np.dot(X[i],w)
y_out = np.where(y_in >=0,1,-1)
delta = y[i]l - y_out
w += alphaxdeltaX[i]
b += alpha*delta
deltas.append(delta)
print(’Weight’,w,’bias’,b,’\n’)
for i in range(4):
y_in = np.dot(X[i],w) +b
y_out = np.where(y_in >= 0,1,0)
print(’input’, X[i], ’output’, y_out)
print(’\n’)
return deltas,w,b

AND gate

X = np.array([[0, 0], [0, 1], [1, O], [1, 111)
y = np.array([0, 0, 0, 11)
delta,w,b = adaline(X,y)




OR gate

X = np.array([[0, 0], [0, 1], [1, O], [1, 11D
y = np.array([0, 1, 1, 1])
delta,w,b = adaline(X,y)
NAND gate
X = np.array([[0, 0], [0, 1], [1, O], [1, 111)

y = np.array([1, 1, 1, 0])
delta,w,b = adaline(X,y)

NOR gate

X = np.array([[0, 0], [0, 11, [1, O, [1, 111D
y = np.array([1, 0, 0, 0])
delta,w,b = adaline(X,y)

3.4 Question 3

Implement McCulloch-Pitts neural network model for XOR and give all the formula
you used in the implementation. Draw the MLPs used for the implementation of
above functions.

The boolean representation of an XOR gate is;

x1x'2 + x'1x2

We first simplify the boolean expression

x1x2 + x1x2 + x‘1x1 4+ x2x2

x1(x‘1 + x2) + x2(x‘1 + x‘2)

(x1 + x2)(x‘1 + x2)

(x1 + x2)(x1x2)¢

From the simplified expression, we can say that the XOR gate consists of an OR gate
(1 + 22), a NAND gate (x1x2), and an AND gate of both.

CODE

X = np.array([[0, 0], [0, 11, [1, 01, [1, 11D
y = np.array([-1, 1, 1, -11)

y_nand = np.array([1,1,1,-1])

y_or = np.array([-1,1,1,1])

def bi_adaline(X,y):

w = np.zeros(2)

b=20.0

alpha = 0.1

iterations = 10

deltas = []

y_output = []

for iteration in range(iterations):

for i in range(4):

y_in = b + np.dot(X[i],w)
y_out = np.where(y_in >=0,1,-1)
delta = y[i] - y_out
w += alphadeltaX[i]



b += alpha*delta
deltas.append(delta)
print (’Weight’,w,’bias’,b,’\n’)
for i in range(4):
y_in = np.dot(X[i],w) +Db
y_out = np.where(y_in >= 0,1,-1)
print(’input’, X[i], ’output’, y_out)
print(’\n’)
for i in range(4):
y_in = np.dot(X[i],w) +b
y_out = np.where(y_in >= 0,1,-1)
y_output.append (y_out)
return deltas,w,b, y_output

Combining NAND AND OR

,,,nand_out = bi_adaline(X,y_nand)
,,,or_out = bi_adaline(X,y_or)

X_xor = np.vstack([nand_out, or_out]).T
deltas, w,b,out = bi_adaline(X_xor,y)

3.5 Question 5

Implement MLP model for XOR by using backpropagation algorithm
CODE

X
y

np.array([[0, 0], [0, 11, [1, O], [1, 11D)
np.array([[0], [1], [1]1, [011)

Activation Function

def sigmoid(x):
return 1 / (1 + np.exp(-x))

def sigmoid_derivative(x):
return sigmoid(x) * (1 - sigmoid(x))

Back Propagation

def backprop(X, y, hidden_size, num_iterations, learning rate):

wl = np.random.randn(2, hidden_size)
bl = np.zeros((1l, hidden_size))

w2 = np.random.randn(hidden_size, 1)
b2 = np.zeros((1, 1))

errors = []

change_point = []

for iteration in range(num_iterations):
#Forward Pass

z1 = np.dot(X, wl) + bl
al = sigmoid(z1)
z2 = np.dot(al, w2) + b2

y_hat = sigmoid(z2)



#Error and derivative
error = y - y_hat
delta?2

error * sigmoid_derivative(z2)

errorl = delta2.dot(w2.T)
deltal = errorl * sigmoid_derivative(zl)

# Update the weights and biases

w2 += learning_rate * al.T.dot(delta2)

b2 += learning_rate * np.sum(delta2, axis=0, keepdims=True)
wl += learning rate * X.T.dot(deltal)

bl += learning_rate * np.sum(deltal, axis=0)
errors.append(np.sum(error, axis = 0))

print(’error’, np.sum(error, axis = 0))

#Testing

outl = np.dot(X,wl) + bl

outl_sig = sigmoid(outl)

out2 = np.dot(outl_sig,w2) + b2

final = sigmoid(out2)

change_point.append(final)

print (’input’,’\n’,X,’\n’, ’output:-’,’\n’,final)

return wl, bl, w2, b2, errors,change_point

calling backprop

wl, bl, w2, b2, error, changes = backprop(X,y,hidden_size = 2,
num_iterations= 10000,learning_rate= 0.2)

4 Conclusion

In this series of assignments, we were tasked with designing and implementing neural networks
for various logical functions using the McCulloch-Pitts and backpropagation algorithms. For the
McCulloch-Pitts neural network, we designed networks for AND, OR, NAND, and NOR gates
using Adaline learning in both unipolar and bipolar cases. We also implemented the network
for the XOR gate and simplified the Boolean expression to understand its composition. We
then used the output of the NAND and OR gate networks as input to a new McCulloch-Pitts
network to implement the XOR function. Finally, we implemented the XOR function using the
backpropagation algorithm in an MLP model.

Through the assignments, we gained a solid understanding of the workings of neural net-
works and their application to logical functions. We learned how the structure and parameters
of the networks can affect their performance and how to optimize them for better accuracy.
The assignments also allowed us to explore the differences between unipolar and bipolar cases
and how they affect the implementation of the networks. Overall, these assignments provided
a great foundation for understanding neural networks and their application in real-world sce-
narios.



References

1. McCulloch, W. S.; Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4), 115-133.

2. Widrow, B., Hoff, M. E. (1960). Adaptive switching circuits. IRE WESCON Convention
Record, 96-104.

3. Haykin, S. (1994). Neural networks: a comprehensive foundation (Vol. 2). Prentice Hall
PTR.

4. Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning representations by
back-propagating errors. nature, 323(6088), 533-536.

5. Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. Neural net-
works for perception, 1-42.

Results

Here is a graph showing the results of Adaline Learning:

1.00 +

0.75

0.50

0.25 +

0.00

—0.25

—0.50 A

—0.75

—1.00 A

)] 3 10 15 20 25 30 35 40

Figure 1: Plot of error converging in AND



1.00

0.75 A

0.50

0.25

0.00

—0.25

—0.50 +

—0.75 A

—1.00 -

5 10 15 20 25 30

Figure 2: Plot of error converging in OR

35

40

1.00 +

0.75 1

0.50

0.25 +

0.00

—0.25

—0.50 A

—0.75

—1.00 A

5 10 15 20 25 30

Figure 3: Plot of error converging in NAND

35

40




1.00

0.75 A

0.50

0.25

0.00

—0.25

—0.50 +

—0.75 A

—1.00 -

5 10 15 20 25 30

Figure 4: Plot of error converging in NOR

35

1.00 +

0.75 1

0.50

0.25 +

0.00

—0.25

—0.50 A

—0.75

—1.00 A

5 10 15 20 25 30

Figure 5: Plot of error not converging in XOR

10




Here is a graph showing the results of Back Propagation:

0.08

0.06

0.04

0.02

0.00

—0.02 +

—0.04 +

—0.06 -

T T T T T
0 2000 4000 6000 8000 10000

Figure 6: Plot of error vs iterations

1.0 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

T T T T T
2000 4000 6000 8000 10000

o -

Figure 7: Conversion of x1,x2,x3,x4 value to 1 and 0

11



